If it's not what You are looking for type in the equation solver your own equation and let us solve it.
169x^2-169x-36=0
a = 169; b = -169; c = -36;
Δ = b2-4ac
Δ = -1692-4·169·(-36)
Δ = 52897
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52897}=\sqrt{169*313}=\sqrt{169}*\sqrt{313}=13\sqrt{313}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-169)-13\sqrt{313}}{2*169}=\frac{169-13\sqrt{313}}{338} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-169)+13\sqrt{313}}{2*169}=\frac{169+13\sqrt{313}}{338} $
| 8=10−2d | | 4m^2=0 | | 15x-2=-30 | | 9x^2-72x=145 | | a^2-5a^2+4a=0 | | 5.6=0.02z+7.35 | | 10(n−90)=20 | | x/6x-4=2x+6 | | 3x+7-x=x+1 | | 4u-10=u+11 | | 6(2y+3)=1/5(10y+5)-3 | | 2x*20/100=780 | | 5(x+4)-5=2(x+3) | | -5(5x+1)=-30 | | -3-3x=-4x-1 | | 2+3(x-1)=7 | | 43-4x=67-7x | | 8/5x=-32 | | -8q+4=-9q+1 | | 5(x+2)=2x-1+4x | | 3(x-1)+4(x-2)=3 | | 2x-2x=-4,6-4,6 | | (1/3)+2z=(-5/6) | | -5x=260 | | E^4x+1=10 | | 7x+4(2x-5)=16x-1 | | x/9+6=6 | | 3x(x-1)=5x+8 | | 5x-6-(x+1)=-7x+2 | | 5x-6=1.5 | | 30^x+36^x+40^x+72^x=24^x+45^x+60^x+90^x+120^x | | 22-2(4-x)=(7-3x)(-10) |